23 research outputs found

    Deep electric field predictions by drift-reduced Braginskii theory with plasma-neutral interactions based upon experimental images of boundary turbulence

    Full text link
    We present 2-dimensional turbulent electric field calculations via physics-informed deep learning consistent with (i) drift-reduced Braginskii theory under the framework of an axisymmetric fusion plasma with purely toroidal field and (ii) experimental estimates of the fluctuating electron density and temperature on open field lines obtained from analysis of gas puff imaging of a discharge on the Alcator C-Mod tokamak. The inclusion of effects from the locally puffed atomic helium on particle and energy sources within the reduced plasma turbulence model are found to strengthen correlations between the electric field and electron pressure. The neutrals are also directly associated with broadening the distribution of turbulent field amplitudes and increasing E×B{\bf E \times B} shearing rates. This demonstrates a novel approach in plasma experiments by solving for nonlinear dynamics consistent with partial differential equations and data without encoding explicit boundary nor initial conditions.Comment: 6 pages, 3 figures, 2 table

    High density LHRF experiments in Alcator C-Mod and implications for reactor scale devices

    Get PDF
    Parametric decay instabilities (PDI) appear to be an ubiquitous feature of lower hybrid current drive (LHCD) experiments at high density. In density ramp experiments in Alcator C-Mod and other machines the onset of PDI activity has been well correlated with a decrease in current drive efficiency and production of fast electron bremsstrahlung. However whether PDI is the primary cause of the 'density limit', and if so by exactly what mechanism (beyond the obvious one of pump depletion) has not been clearly established. In order to further understand the connection, the frequency spectrum of PDI activity occurring during Alcator C-Mod LHCD experiments has been explored in detail by means of a number of RF probes distributed around the periphery of the C-Mod tokamak including a probe imbedded in the inner wall. The results show that (i) the excited spectra consists mainly of a few discrete ion cyclotron (IC) quasi-modes, which have higher growth than the ion sound branch; (ii) PDI activity can begin either at the inner or outer wall, depending on magnetic configuration; (iii) the frequencies of the IC quasi-modes correspond to the magnetic field strength close to the low-field side (LFS) or high-field side separatrix; and (iv) although PDI activity may initiate near the inner separatrix, the loss in fast electron bremsstrahlung is best correlated with the appearance of IC quasi-modes characteristic of the magnetic field strength near the LFS separatrix. These data, supported by growth rate calculations, point to the importance of the LFS scrape-off layer (SOL) density in determining PDI onset and degradation in current drive efficiency. By minimizing the SOL density it is possible to extend the core density regime over which PDI can be avoided, thus potentially maximizing the effectiveness of LHCD at high density. Increased current drive efficiency at high density has been achieved in FTU and EAST through lithium coating and special fuelling methods, and in recent C-Mod experiments by operating at higher plasma current. Another approach would be to locate the launcher in the inner wall with double null operation. This would reduce the SOL density by an order of magnitude or more and greatly mitigate the effects of PDI as well as other parasitic losses.United States. Department of Energy (DE-FC02-99ER54512

    The effects of main-ion dilution on turbulence in low q95 C-Mod ohmic plasmas, and comparisons with nonlinear GYRO

    Get PDF
    Recent experiments on C-mod seeding nitrogen into ohmic plasmas with [subscript q]95 = 3.4 found that the seeding greatly reduced long-wavelength (ITG-scale) turbulence. The long-wavelength turbulence that was reduced by the nitrogen seeding was localized to the region of r/a≈0.85, where the turbulence is well above marginal stability (as evidenced by Q[subscript i]/Q[subscript GB]≫1). The nonlinear gyrokinetic code GYRO was used to simulate the expected turbulence in these plasmas, and the simulated turbulent density fluctuations and turbulent energy fluxes quantitatively agreed with the experimental measurements both before and after the nitrogen seeding. Unexpectedly, the intrinsic rotation of the plasma was also found to be affected by the nitrogen seeding, in a manner apparently unrelated to a change in the electron-ion collisionality that was proposed by other experiments.United States. Dept. of Energy. Office of Fusion Energy Sciences (Award E-FG02-94-ER54235

    High field side launch of RF waves: A new approach to reactor actuators

    Get PDF
    Launching radio frequency (RF) waves from the high field side (HFS) of a tokamak offers significant advantages over low field side (LFS) launch with respect to both wave physics and plasma material interactions (PMI). For lower hybrid (LH) waves, the higher magnetic field opens the window between wave accessibility (n∥≡ck∥/ω>1−ω2pi/ω2+ω2pe/ω2ce−−−−−−−−−−−−−−−−√+ωpe/∣∣ωce∣∣) and the condition for strong electron Landau damping (n∥∼30/Te−−−−−√ with Te in keV), allowing LH waves from the HFS to penetrate into the core of a burning plasma, while waves launched from the LFS are restricted to the periphery of the plasma. The lower n∥ of waves absorbed at higher Te yields a higher current drive efficiency as well. In the ion cyclotron range of frequencies (ICRF), HFS launch allows for direct access to the mode conversion layer where mode converted waves absorb strongly on thermal electrons and ions, thus avoiding the generation of energetic minority ion tails. The absence of turbulent heat and particle fluxes on the HFS, particularly in double null configuration, makes it the ideal location to minimize PMI damage to the antenna structure. The quiescent SOL also eliminates the need to couple LH waves across a long distance to the separatrix, as the antenna can be located close to plasma without risking damage to the structure. Improved impurity screening on the HFS will help eliminate the long-standing issues of high Z impurity accumulation with ICRF. Looking toward a fusion reactor, the HFS is the only possible location for a plasma-facing RF antenna that will survive long-term. By integrating the antenna into the blanket module it is possible to improve the tritium breeding ratio compared with an antenna occupying an equatorial port plug. Blanket modules will require remote handling of numerous cooling pipes and electrical connections, and the addition of transmission lines will not substantially increase the level of complexity. The obvious engineering challenges associated with locating antenna structures on the HFS can be overcome if HFS antennas are incorporated in the overall experimental design from the start. The Advanced Divertor and radio frequency eXperiment(ADX) will include LH and ICRF antennas located on the HFS. Compact antenna designs based on proven technologies (e.g. multi-junction and “4-way splitter” antennas) fit within the available space on the HFS of ADX. Field aligned ICRF antennas are also located on the HFS. The ADX vacuum vessel design includes dedicated space for transmission lines, pressure windows, and vacuum feedthrus for accessing the HFS wall

    Characterization of onset of parametric decay instability of lower hybrid waves

    Get PDF
    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize ITER-relevant steady-state plasmas by controlling the current density profile. Using a 4×16 waveguide array, over 1 MW of LH power at 4.6 GHz has been successfully coupled to the plasmas. However, current drive efficiency precipitously drops as the line averaged density (n̄ e ) increases above 10[superscript 20]m[superscript −3]. Previous numerical work shows that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer (SOL) plasmas [Wallace et al., Physics of Plasmas 19, 062505 (2012)]. Recent observations of parametric decay instability (PDI) suggest that non-linear effects should be also taken into account to fully characterize the parasitic loss mechanisms [Baek et al., Plasma Phys. Control Fusion 55, 052001 (2013)]. In particular, magnetic configuration dependent ion cyclotron PDIs are observed using the probes near n̄[subscript e]≈1.2×10[superscript 20]m[superscript −3] . In upper single null plasmas, ion cyclotron PDI is excited near the low field side separatrix with no apparent indications of pump depletion. The observed ion cyclotron PDI becomes weaker in inner wall limited plasmas, which exhibit enhanced current drive effects. In lower single null plasmas, the dominant ion cyclotron PDI is excited near the high field side (HFS) separatrix. In this case, the onset of PDI is correlated with the decrease in pump power, indicating that pump wave power propagates to the HFS and is absorbed locally near the HFS separatrix. Comparing the observed spectra with the homogeneous growth rate calculation indicates that the observed ion cyclotron instability is excited near the plasma periphery. The incident pump power density is high enough to overcome the collisional homogeneous threshold. For C-Mod plasma parameters, the growth rate of ion sound quasi-modes is found to be typically smaller by an order of magnitude than that of ion cyclotron quasi-modes. When considering the convective threshold near the plasma edge, convective growth due to parallel coupling rather than perpendicular coupling is likely to be responsible for the observed strength of the sidebands. To demonstrate the improved LHCD efficiency in high density plasmas, an additional launcher has been designed. In conjunction with the existing launcher, this new launcher will allow access to an ITER-like high single pass absorption regime, replicating the JLH (r) expected in ITER. The predictions from the time domain discharge scenarios, in which the two launchers are used, will be also presented.United States. Dept. of Energy (Award No. DE-FC02-99ER54512)United States. Dept. of Energy (Award No. DE-AC02-76CH03073

    The physics mechanisms of the weakly coherent mode in the Alcator C-Mod Tokamak

    Get PDF
    The weakly coherent mode (WCM) in I-mode has been studied by a six-field two-fluid model based on the Braginskii equations under the BOUT++ framework for the first time. The calculations indicate that a tokamak pedestal exhibiting a WCM is linearly unstable to drift Alfven wave (DAW) instabilities and the resistive ballooning mode. The nonlinear simulation shows promising agreement with the experimental measurements of the WCM. The shape of the density spectral and location of the spectral peak of the dominant toroidal number mode n = 20 agrees with the experimental data from reflectometry. The simulated mode propagates in electron diamagnetic direction is consistent with the results from the magnetic probes in the laboratory frame, a large ratio of particle to heat diffusivity is consistent with the distinctive experimental feature of I-mode, and the value of the simulated χeat the edge is in the range of experimental errors of χefffrom the experiment. The prediction of the WCM shows that free energy is mainly provided by the electron pressure gradient, which gives guidance for pursuing future I-mode studies

    Measurement of LHCD edge power deposition through modulation techniques on Alcator C-Mod

    Get PDF
    The efficiency of LHCD on Alcator C-Mod drops exponentially with line average density. At reactor relevant densities (> 1 · 1020 [m[-3 superscript]]) no measurable current is driven. While a number of causes have been suggested, no specific mechanism has been shown to be responsible for the loss of current drive at high density. Fast modulation of the LH power was used to isolate and quantify the LHCD deposition within the plasma. Measurements from these plasmas provide unique evidence for determining a root cause. Modulation of LH power in steady plasmas exhibited no correlated change in the core temperature. A correlated, prompt response in the edge suggests that the loss in efficiency is related to a edge absorption mechanism. This follows previous results which found the generation of n||-independent SOL currents. Multiple Langmuir probe array measurements of the conducted heat conclude that the lost power is deposited near the last closed flux surface. The heat flux induced by LH waves onto the outer divertor is calculated. Changes in the neutral pressure, ionization and hard X-ray emission at high density highlight the importance of the active divertor in the loss of efficiency. Results of this study implicate a mechanism which may occur over multiple passes, leading to power absorption near the LCFS

    Quasi-coherent fluctuations limiting the pedestal growth on Alcator C-Mod: experiment and modelling

    Get PDF
    Performance predictions for future fusion devices rely on an accurate model of the pedestal structure. The candidate for predictive pedestal structure is EPED, and it is imperative to test the underlying hypotheses to further gain confidence for ITER projections. Here, we present experimental work testing one of the EPED hypotheses, namely the existence of a soft limit set by microinstabilities such as the kinetic ballooning mode. This work extends recent work on Alactor C-Mod (Diallo et al 2014 Phys. Rev. Lett. 112 115001), to include detailed measurements of the edge fluctuations and comparisons of edge simulation codes and experimental observations

    Non-local heat transport in Alcator C-Mod ohmic L-mode plasmas

    Get PDF
    Non-local heat transport experiments were performed in Alcator C-Mod ohmic L-mode plasmas by inducing edge cooling with laser blow-off impurity (CaF2) injection. The non-local effect, a cooling of the edge electron temperature with a rapid rise of the central electron temperature, which contradicts the assumption of 'local' transport, was observed in low collisionality linear ohmic confinement (LOC) regime plasmas. Transport analysis shows this phenomenon can be explained either by a fast drop of the core diffusivity, or the sudden appearance of a heat pinch. In high collisionality saturated ohmic confinement (SOC) regime plasmas, the thermal transport becomes 'local': the central electron temperature drops on the energy confinement time scale in response to the edge cooling. Measurements from a high resolution imaging x-ray spectrometer show that the ion temperature has a similar behaviour as the electron temperature in response to edge cooling, and that the transition density of non-locality correlates with the rotation reversal critical density. This connection may indicate the possible connection between thermal and momentum transport, which is also linked to a transition in turbulence dominance between trapped electron modes (TEMs) and ion temperature gradient (ITG) modes. Experiments with repetitive cold pulses in one discharge were also performed to allow Fourier analysis and to provide details of cold front propagation. These modulation experiments showed in LOC plasmas that the electron thermal transport is not purely diffusive, while in SOC the electron thermal transport is more diffusive like. Linear gyrokinetic simulations suggest the turbulence outside r/a = 0.75 changes from TEM dominance in LOC plasmas to ITG mode dominance in SOC plasmas.United States. Dept. of Energy (DoE Contract No DE-FC02-99ER54512)Oak Ridge Institute for Science and Education (DOE Fusion Energy Postdoctoral Research Program

    20 years of research on the Alcator C-Mod tokamak

    Get PDF
    The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental observation of ion cyclotron range of frequency (ICRF) mode-conversion, ICRF flow drive, demonstration of lower-hybrid current drive at ITER-like densities and fields and, using a set of novel diagnostics, extensive validation of advanced RF codes. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. A summary of important achievements and discoveries are included.United States. Dept. of Energy (Cooperative Agreement DE-FC02-99ER54512)United States. Dept. of Energy (Cooperative Agreement DE-FG03-94ER-54241)United States. Dept. of Energy (Cooperative Agreement DE-AC02-78ET- 51013)United States. Dept. of Energy (Cooperative Agreement DE-AC02-09CH11466)United States. Dept. of Energy (Cooperative Agreement DE-FG02-95ER54309)United States. Dept. of Energy (Cooperative Agreement DE-AC02-05CH11231)United States. Dept. of Energy (Cooperative Agreement DE-AC52-07NA27344)United States. Dept. of Energy (Cooperative Agreement DE-FG02- 97ER54392)United States. Dept. of Energy (Cooperative Agreement DE-SC00-02060
    corecore